

How do I get involved?

Send email to:

ost_info@lists.ipac.caltech.edu

From the Rise of Metals to Water for Habitable Worlds

Science coverage will be broad: highlight some of the goals

- First Billion Years:
 - Protogalaxies
 - Galaxy evolution
- Galaxy and blackhole Evolution
 - ISM probes for galaxies
 - Rise of metals
- Nearby Galaxies & Milky Way:
 - Polarization
 - Feedback in galaxies
 - Water transport
- Planetary systems: formation & exoplanets
 - Dust disks
 - Gas disks
 - Exoplanet atmospheres
- Solar systems
 - Small body census
 - Isotopes and origin of Earth water
 - Giant Planets

COSMIC DAWN - EARLY UNIVERSE - COSMOLOGY

Big Picture topics already identified:

- Collapse to form first stars and proto-galaxies
 - Primordial cooling via H₂ rotational lines
 - seeds of super massive black holes
- Cosmic chemical evolution of the Universe
 - First dust, rise of heavy elements and building blocks of life
- Properties of reionizing galaxies
 - 3-D maps of the Universe
 - 3-D clustering revealing fine-structure line intensities -> metallicity, UV fields
 Vieira

Hubble Space
Telescope
1990—2025+
2.4 meter
0.1—2.4 µm
260 K
James Webb Space Telescope
2018—2028
6.5 meter
0.7—28.3 µm

Origins Space Telescope 2020 Decadal 8-15 m single aperture 6—1000 µm (TBD) 4.5 K

50 K

Hollenbach & Tielens 1997

Spectral probes from 10 – 500 μm

Species	Wavelength [μm]	f (M82)	f (Arp220)	Diagnostic Utility
Ionized Gas Fine Structure Lines				
Ne V	24.3			Unambiguously AGN
O IV	25.9, 54.9			Primarily AGN
S IV	10.5	2.1 (-5)		
Ne II	12.3	1.2 (-3)	7.5 (-5)	Probes gas density and
Ne III	15.6, 36.0	2.05 (-4)		UV field hardness in
S III	18.7, 33.5	1.0 (-3)	7.3 (-5)	star formation HII
Ar III	21.83	9.1 (-6)		regions.
O III	51.8, 88.4	1.3 (-3)		
N III	57.3	4.2 (-4)		
NII	122, 205	2.1 (-4)		Diffuse HII regions
Neutral Gas Fine Structure Lines				
Fe II	26.0			Density and temperature probes
Si II	34.8	1.1 (-3)	7.7 (-5)	of photodissociated-neutral
ΟI	63.1, 145	2.2 (-3)	6.8 (-5) (abs)	gas interface between HII
CII	158	1.6 (-3)	1.3 (-4)	regions and molecular clouds.
Molecular Lines				
H_2	9.66, 12.3, 17.0, 28.2	2 (-5)	3 (-5)	Coolants of first collapse
CH	149		4 (-5)	Ground state absorbtion:
OH	34.6, 53.3, 79.1, 119	2 (-6)	2 (-4) (abs)	gives column and abundance.
OH	98.7, 163		5 (-5)	Emission: gas coolants, constrain
H_2O	73.5, 90, 101, 107, 180		5 (-5)	temperature, density of warm
CO	325, 372, 434, 520	3 (-6)	1 (-5)	(50K < T < 500 K) mol. gas

OST provides the crucial link in wavelength coverage between JWST and ALMA to complete our view of the evolution of the universe.

Milky Way, Interstellar Medium, and Nearby Galaxies

Reveal the connection between **Black Hole growth** and **star formation**.

Trace the **dust and metal enrichment** history of the Universe.

Magnetic fields and turbulence

The Origins Space Telescope will characterize magnetic fields and turbulence from molecular clouds to star-forming cores—with high resolution and a wide field of view

Galaxy Feedback Mechanisms at z<1

Science Goal: Characterize the mechanisms of feedback from AGN/star formation across the spectrum of galaxy masses and types and quantify the amount of material recycled/expelled

from galaxies at z<1.

t = 30 Myr

1000

Water Transport to Terrestrial Planetary Zone

Science Goal: Observe gas-phase water in interstellar clouds and dense star-forming cores to probe critical processes related to formation and transport of water to the terrestrial planet zone, as a key input to habitability.

Debris Disks and Giant

Marios+2008, 2010

→ HD is a million with the series of the term of the

emissive than H₂ at T ~ 20 K.

→ Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10⁻⁵)

→HD will follow H₂ in the

→TW Hya disk_ڃ₃؞ۥ mass $M_{disk} \sim 0.05$

M⊙

HD J = 1-0

CO J = 23-22

56.5

57.0

114

1100

Science Topics

POTENTIAL FOR TRANSITING HABITABLE PLANETS AROUND M DWARFS?

Wavenumber (cm

Jupiters around M-dwarf stars via transits. Direct imaging of Jupiters at Jupiter distances with a coronagraph.

History And Evernion of the Setar System (SS):

Heliocentric Distance (AU)

- Measure the thermal emission (via Far-IR imaging) of small bodies in outer SS – 1000's of targets
- Volatile isotope measurements (HCNO) across the SS
- Constrain the Thermal History/Evolution of the Solar System – He/H₂ measurements.
- Moving Targets Not limited by confusion.

Planetary Origins and Evolution of the Solar System

• **Goal:** To measure accurate isotopic ratios and abundances of trace gases, to constrain models and inform understanding of solar system origin and evolution.

Comparative Climate and Thermal Evolution of Giant Planets

Far-IR spectra of Saturn as measured by Cassini/CIRS, showing the lines and the collision-induced continuum that allows temperature, windshear, aerosol, para-H2 and helium sounding.

 Goal: Explore the thermal history, present-day climate and circulation patterns of the four Giant Planets as archetypes for brown dwarf and exoplanetary atmospheres.

Find Planet IX

• **Goal:** Do we really understand our outer backyard?: Find Planet Nine (from Outer Space!)

Even a 2 Earth Radius Planet 9, with Teff=37K has $^{\sim}4$ mJy flux at 80um is detectable with a 5 meter OST architecture. OST 5 meter (10 meter), 5-sigma, 1second sensitivity at 80um as 0.6 (0.15) mJy.

Send email to:

ost_info@lists.ipac.caltech.edu

Visit our website: asd.gsfc.nasa.gov/firs

Secret word:

Universe